二元一次方程教案ppt 二元一次方程教案
大家好,我是东南,我来为大家解答以上问题二元一次方程教案ppt,二元一次方程教案很多人还不知道,现在让我们一起来看看吧!
作为一名优秀的教育工作者,总不可避免地需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!下面是小编为大家整理的二元一次方程教案,希望能够帮助到大家。
二元一次方程教案1
教学目标:
1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
重点:能根据题意列二元一次方程组;根据题意找出等量关系;
难点:正确发找出问题中的两个等量关系
教学过程:
一、复习
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答
新课:
看一看课本99页探究1
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940
练一练:
1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?
3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?
4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
二元一次方程教案2
教学目标
1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
教学重点
把方程组变形后用加减法消元。
教学难点
根据方程组特点对方程组变形。
教学过程
一、复习引入
用加减消元法解方程组。
二、新课。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?
能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组
思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?
学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?
三、练习。
1.P40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
四、小结。
解二元一次方程组的加减法,代入法有何异同?
五、作业。
P33.习题2.2A组第2题(3)~(6)。
B组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:
2.3二元一次方程组的应用(1)
二元一次方程教案3
一、教材分析
1、教材的地位和作用
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明
对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。
三、教学过程
(一)感知身边数学
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
(二)享受探究乐趣
1、探究一次函数与二元一次方程的关系
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系
[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦
1、抢答题
2、旅游问题
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地
1、数学日记
2、布置作业
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。
四、教学设计反思
1、贯穿一个原则以学生为主体的原则
2、突出一个思想数形结合的思想
3、体现一个价值数学建模的价值
4、渗透一个意识应用数学的意识
《一次函数与二元一次方程(组)》教案
教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程
(一)引入新课
多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课
1、探究一次函数与二元一次方程的关系
填空:二元一次方程 可以转化为 ________。
思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
2、探究一次函数图像与二元一次方程组的关系
(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。
(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。
解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题
(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。
(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。
5、旅游问题
古城荆州历史悠久,文化灿烂。
今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?
二元一次方程教案4
一.教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三.教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男女生各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少?
3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]
(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)
2.二元一次方程组的解的'概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
方程x+y=0的解,方程2x+3y=2的解,方程组的解。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知是方程组的解,求a,b的值。
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组的解.
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
3.例 已知方程3X+2Y=10
⑴当X=2时,求所对应的Y 的值;
⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;
⑶用含X的代数式表示Y;
⑷用含Y 的代数式表示X;
⑸当X=-2,0 时,所对应的Y值是多少;
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?
2.你还有什么问题或想法需要和大家交流?
3.教材P82
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
二元一次方程教案5
教学目标
1.知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作——————自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一. 故事引入
迪卡儿的故事——————蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二. 尝试探疑
1、Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?
以方程x—y=—1的解为坐标的点在不在函数y=x+1 的图象上?方程x—y=—1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x—y=—1。
然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x—2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组
y=x+1 的解。
Y=4x—2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三. 方程与函数关系的应用
解方程组 x—2y=—2
2x—y=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1。把两个方程都化成函数表达式的形式。
2。画出两个函数的图象。
3。画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2。1 y=2。1
y=1。9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四. 引申
方程组 x+y=2
x+y=5 解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五. 课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六. 作业
1。用作图象法解方程组2x+y=4
2x—3y=12
2。如图,直线L、L相交于点 A,试求出A点坐标。
二元一次方程教案6
一、复习引入
1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.
2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1?x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1?x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.
即:对于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1?x2=ca
(可以利用求根公式给出证明)
例1 不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1.根与系数的关系.
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
四、作业布置
1.不解方程,写出下列方程的两根和与两根积.
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值
二元一次方程教案7
教学目的
1.使学生了解二元一次方程,二元一次方程组的概念。
2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。
3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。
重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含
难点;了解二元一次方程组的解的含义。
导学提纲:
1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?
2.阅读教材问题1思考下列问题
⑴.能否用我们已经学过的知识来解决这个问题?
用算术法解答
用一元一次方程解答
解后反思:既然是求两个未知量,那么能不能同时设两个未知数?
⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)
⑶.对于方程x十y=73x+y=17请思考下列问题
①它们是一元一次方程吗?
②这两个方程有没有共同特点/若有,有河共同特点?
③类比一元一次方程的概念,总结二元一次方程的概念
3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)
注意二元一次方程组的书写方式,方程组中的各方程中,同一个字母必须代表同一个量
4.与是否满足方程①与是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念
注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取,时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.
(2)二元一次方程组的解是一对数,而不是一个数,所以必须把与合起来,才是方程组的解.
5.思考讨论在方程组①②③④
⑤⑥中,属于二元一次方程组的有
达标检测:
1.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:
(1)甲数的比乙数的2倍少7:_____________________________;
(2)摩托车的时速是货车的倍,它们的速度之和是200千米/时:________;
(3)某种时装的价格是某种皮装的价格的1.4倍,5件皮装比3件时装贵700元:______________________________.
2.下列方程是二元一次方程的是()
A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2
3.下列不是二元一次方程组的是()
x+3y=5m+3m=152x+3x=0m+n=5
A、B、C、D、
2x-3x=3+=3-5y=02m+n=6
x=2
4.在方程3x-ky=0中,如果是它的一个解,则k的值为_______.
y=-3
5.若mxy+9x+3y=-9是关于x、y的二元一次方程,则m=_______n=_______.
二元一次方程教案8
教学目标:
1、会用代入法解二元一次方程组
2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。
此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。
引导性材料:
本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组 2(X+Y)=60
Y=2X 观察
2(X+2X)=60与 2(X+Y)=60 ①
Y=2X ② 有没有内在联系?有什么内在联系?
(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)
知识产生和发展过程的教学设计
问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的问题(解一元一次方程)。
解方程组 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
问题2:你认为解方程组 2(X+Y)=60 ①
Y=2X ② 的关键是什么?那么解方程组
X=2Y+1
2X—3Y=4 的关键是什么?求出这个方程组的解。
上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的方法叫“代入消元法”,简称“代入法”。
问题3:对于方程组 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?
(说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)
例题解析
例:用代入法将下列解二元一次方程组转化为解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
将①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
将②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,将Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,将T=2S-3代入②消去T得:
3S+2(2S-3)=8
课内练习:
解下列方程组。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小结:
1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。
2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。
3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。
课后作业:
教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。
二元一次方程教案9
【教学目标】
知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。
过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。
情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
【教学重点、难点】
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
【教学过程】
一、 复习引入:
(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?
(2) 合作学习:
①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?
这个问题中有几个未知数,能列一元一次方程求解吗?
如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?
二、 新课教学
这就是我们今天要学习的4、1二元一次方程(板书课题)
(1) 观察上述两个方程,归纳特点
(2) 讨论选择正确概念
① 含有两个未知数的方程叫二元一次方程。
② 含有两个未知数,且含有未知数的项的次数都是1次的方程叫二元一次方程。
(3) 做一做P86——1,2
(4) 例:已知方程3x+2y=10
① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)
② 求当x=-2,0,3时,对应的y的值
(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?
回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。
同理试写出该方程的两个解(注意写法格式)
思考:方程3x+2y=10的解有多少个?
师归纳:二元一次方程解具不定性和相关性
(5) 练习:P88——课内练习1,2
(6) 补充练习:P89---作业题4(说明:方程的解须是正整数)
已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?
(说明:1.本例是根据教科书P89---B组第5题改编。原题要求a的值,但学
生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原
题要求高了,其实有利于各类学生参与并寻求结论。
三、 课堂小结:
二元一次方程的意义及二元一次方程的解的概念(注意书写格式)
二元一次方程解的不定性和相关性
会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式
四、 作业 :
课堂作业本
二元一次方程教案10
教学目标
1.使学生会用加减法解二元一次方程组。
2.学生通过解决问题,了解代入法与加减法的共性及个性。
重点:探寻用加减法解二元一次的方程组的进程。
难点:消元转化的过程
教学方法:讲练结合、探索交流课型新授课教具投影仪
教师活动:学生活动
情景设置:
小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。
新课讲解:
列出方程组
1.解方程组
分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?
板演:
解:〈1〉+〈2〉得:
4x=6
x=
把x= 代入〈1〉得
+2y=1
解出这个方程,得
y=
所以原方程组的解是
2.解方程组
通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?
解:〈1〉 3,得
15x-6y=12 〈3〉
〈2〉 2,得
4x-6y=-10 〈4〉
〈3〉-〈4〉,得
11x=22
x=2
将x=2代入〈1〉,得
5 2-2y=4
y=3
所以原方程组的解是
加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。
练一练:
解方程组
小结:
加减消元法关键是如何消元,化二元为一元。
先观察后确定消元。
教学素材:
A组题:解下列方程组:
(1)
(2)
(3)
(4)
(5)
B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?
(1)
(2)
学生读题,议一议
学生想一想,如感到困难则看道简单题。
由学生观察,如何求出x,y的值,学生再讨论。
试一试。学生口述。
老师板演
得到一元一次方程
学生再观察,议一议
①消去哪个未知数
②怎样消去?
P112 1(1)(2)(3)(4)
作业习题11.3 P112 1(3)(4) 3 , 4
二元一次方程教案11
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教学难点
找等量关系列二元一次方程组。
教学过程
一、情境引入。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.P38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
P42。习题2.3A组第1题。
后记:
2.3二元一次方程组的应用(2)
二元一次方程教案12
二元一次方程
§11.1 二元一次方程
【教学目标】
【知识目标】
了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【重点】
二元一次方程组的含义
【难点】
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
【教学过程】
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次
练习(投影)
下列方程有哪些是二元一次方程
+2y=1 xy+x=1 3x-=5 x2-2=3x
xy=1 2x(y+1)=c 2x-y=1 x+y=0
二、议一议、
师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?
师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成
x-y=2
x+1=2(y-1)
像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
如: 2x+3y=3 5x+3y=8
x-3y=0 x+y=8
三、做一做、
1、 x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?
2、 X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?
你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?
x=6,y=2是方程x+y=8的一个解,记作 x=6 同样, x=5
y=2 y=3
也是方程x+y=8的一个解,同时 x=5 又是方程5x+3y=34的一个解,
y=3
四、随堂练习(P103)
五、小结:
1、 含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。
2、 二元一次方程的解是一个互相关联的两个数值,它有无数个解。
3、 含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。
六、教后感:
七、自备部分
二元一次方程教案13
教学目标
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
教学重点
根据实际问题列二元一次方程组。
教学难点
1.找实际问题中的相等关系。
2.彻底理解题意。
教学过程
一、引入。
本节课我们继续学习用二元一次方程组解决简单实际问题。
二、新课。
例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?
探究: 1. 你能画线段表示本题的数量关系吗?
2.填空:(用含S、V的代数式表示)
设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1.建立方程模型。
(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度
(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?
2.P38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
二元一次方程教案14
【摘要】初三数学二元一次方程教案实录本文通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【教学目标】
【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【重点】二元一次方程组的含义
【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
【教学过程】
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:这个定义有两个地方要注意①、含有两个未知数,②、含的次数是一次
练习:(投影)
下列方程有哪些是+2y=1 xy+x=1 3x-=5 x2-2=3x
xy=1 2x(y+1)=c 2x-y=1 x+y=0
二、议一议、
师:上面的方程中x-y=2的x含义相同吗?
师:
x-y=2
x+1=2(y-1)
2x+3y=3 5x+3y=8
x-3y=0 x+y=8
1、 x=6,y=22、 X=5,y=3 x=6 x=5
y=2 y=3
x=5 y=3
1、 2、 3、
二元一次方程教案15
【教学目标】
知识目标:
①使学生初步理解二元一次方程与一次函数的关系。
②能根据一次函数的图象求二元一次方程组的近似解。
能力目标:
通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。
情感目标:
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。
重点要求:
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
难点突破:
经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。
【教学过程】
一、学前先思
师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?
生:代入消元法、加减消元法。
师:请你猜测还有其他的解法吗?
生:(小声议论,有人提出图象解法)
师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?
生:二元一次方程组怎么会有图象?它的图象应该怎样画?
生:二元一次方程组的图象解法怎么做?
师:同学们都问得很好!那你有喜欢的二元一次方程组吗?
生:(比较害羞)
师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。让我们带着同学们提出的问题从二元一次方程开始今天的学习。
二、探究导学
题目:
判断上面几组解中哪些是二元一次方程的解?
生:和不是,其余各组均是方程的解。
师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
生:我发现二元一次方程的解就是相对应的一次函数图象上的点的坐标。
师:很好!反过来,请问:一次函数图象上的点的坐标是否是与其相对应的二元一次方程的解呢?
生:是的。并且二元一次方程的解中的、的值就是相对应的一次函数图象上点的横、纵坐标的值。
三、巩固基础
师:非常好!那下面的题目你会解吗?
(学生读题)题目:方程有一个解是,则一次函数的图象上必有一个点的坐标为______.
生:(2,1)
(学生读题)题目:一次函数的图象上有一个点的坐标为(3,2),则方程必有一个解是_________.
生:
师:你能把下面的二元一次方程转化成相应的一次函数吗?
(学生读题)把下列二元一次方程转化成的形式:
(1)(2)
生:第(1)题利用移项,得到,所以
第(2)题利用移项,得到,两边同时除以2,所以
四、感悟提升
师:如果将和组成二元一次方程组,你能用代入消元法或者加减消元法求出它的解吗?
生:能,我算出
师:很好!你能在同一直角坐标系中画出一次函数与的图象吗?
生:可以。(动手在学案上画图)
师:观察两条直线的位置关系,你有什么发现?
生:我发现这两条直线相交,并且交点坐标是(2,1)。
师:通过以上活动,你能得到什么结论?
生:我发现刚刚求出的二元一次方程的解刚好就是一次函数与的图象的交点坐标(2,1)。
师:很好!你能抽象成一般的结论吗?
生:如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元一次方程组的解。
师:非常好!用一次函数的图象解二元一次方程组的方法就是我们今天要学习的二元一次方程组的图象解法。
师:你能学以致用吗?
y=2x-5
y=-x+1
题目:如图,方程组的解是___________.
生:根据图象可知:一次函数与的图象的交点是(2,-1),因此,方程组的解是。
师:回答得真棒!
五、例题教学
例题:利用一次函数的图象解二元一次方程组。
师:请大
本文到此讲解完毕了,希望对大家有帮助。