东南教育网您的位置:首页 >资讯 > 考试动态 >

六年级下册数学教案二次备课 六年级下册数学教案

导读 大家好,我是东南,我来为大家解答以上问题六年级下册数学教案二次备课,六年级下册数学教案很多人还不知道,现在让我们一起来看看吧!  ...

大家好,我是东南,我来为大家解答以上问题六年级下册数学教案二次备课,六年级下册数学教案很多人还不知道,现在让我们一起来看看吧!

  在教学工作者开展教学活动前,编写教案是必不可少的,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案要怎么写呢?下面是小编整理的人教版六年级下册数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

  六年级下册数学教案 篇1

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4

  0.5:0.2和5:2

  1/2:1/3和6:4

  0.2:0.8和1:4

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书

  组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6=60:40

  内项:1.66o

  外项:2.440

  (2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

  如:2.4:1.6=60:40

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1)学生独立探索其中的规律。

  (2)与同学交流你的发现。

  (3)汇报你的发现,全班交流。(师作适当的补充)

  在比例里,两个内项的积等于两个外项的积。

  板书

  两个外项的'积是2.440=96

  两个内项的积是1.660=96

  外项的积等于内项的积。

  (4)举例说明,检验发现。

  0.6:0.5=1.2:1

  两个外项的积是0.61=0.6

  两个内项的积是0.51.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:2.4/1.6=60/40

  3.440=1.660

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5)学生归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  4.填一填。

  (1)1/2:1/5=1/4:1/10

  ()()=()()

  (2)0.8:1.2=4:6

  ()()=()()

  (3)45=210

  4:()=():()

  5.做一做。

  完成课本中的做一做。

  6.课堂小结

  (1)说一说比例的基本性质。

  (2)你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

  三、巩固练习

  完成课文练习六第4~6题。

  补充习题

  一题多变化,动脑解决它

  (1)在比例里,两个内项的积是18,

  其中一个外项是2,另一个外项是()。

  (2)如果5a=3b,那么,=,

  (3)a︰8=9︰b,那么,ab=()

  教学反思:

  比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

  六年级下册数学教案 篇2

  教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的'基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

  情感目标:

  体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的侧面沿着高剪开。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),侧面积=长方形的面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积=圆柱的侧面积+底面积×2

  =Ch+2πr2

  =πdh+2πr2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?(用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3.巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

  六年级下册数学教案 篇3

  教学目标:

  1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

  2、进一步理解等底等高的圆柱和圆锥之间的关系。

  3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

  教学重难点:综合应用所学知识解决实际问题。

  教学过程:

  一、复习回顾

  1、等底等高的圆柱与圆锥体积之间有怎样的关系?

  2、圆锥的体积怎样计算?

  二、基本练习

  1、填空

  (1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

  (3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

  (4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

  (5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

  2、判断。

  (1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

  (2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

  (3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

  三、综合应用

  1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

  2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

  教学反思

  教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

  教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的.体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

  教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

  [再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

  六年级下册数学教案 篇4

  【教材分析】

  正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

  【学情分析】

  学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

  【设计理念】

  数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

  1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

  2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

  3.注重积累数学学习经验,渗透数学思想方法。

  4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

  【教学目标】

  1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

  2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

  3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

  【教学重点】

  理解正比例的意义。

  【教学难点】

  掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  【教学准备】

  教学课件。

  【教学过程】

  一、激趣设疑,铺垫衔接。

  1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

  2.结合现实情境回忆常见的数量关系。

  【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。】

  二、合作探究,发现规律。

  1.教学例1

  出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

  谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

  组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

  谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

  预设:

  (1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

  (2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

  根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

  提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

  根据学生的回答,板书:

  提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

  小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

  请学生完整地说一说表中的路程和时间成什么关系。

  【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

  2.教学“试一试”。

  让学生自主读题,根据表中已经给出的数据把表格填写完整。

  谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

  提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

  根据学生的回答,板书:

  让学生结合上面的`关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

  【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

  3.抽象概括

  请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

  启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

  根据学生的回答,板书:,并揭示课题。

  请大家想一想,生活中还有哪些成正比例的量?

  【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

  三、分层练习,丰富体验

  1.“练一练”第1题。

  出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

  讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

  学生按要求活动,并组织反馈。

  提问:张师傅生产零件的数量和时间成正比例吗?为什么?

  2.“练一练”第2题。

  出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

  3.练习十第1题。

  先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

  4.练习十第2题。

  出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

  出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

  结合学生的回答小结。

  追问:判断两种相关联的量是否成正比例关系,关键看什么?

  【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

  四、反思回顾,提升认识

  谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

  【板书设计】

  正比例的意义

  两种相关联的量

  六年级下册数学教案 篇5

  教学目标

  1.理解圆柱体积公式的推导过程,掌握计算公式。

  2.体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

  3.感受探索数学奥秘的乐趣,培养学习数学的积极情感,

  教学重难点

  教学重点:掌握和运用圆柱体积计算公式

  教学难点:圆柱体积公式的推导过程

  教学过程

  一、复习导入

  同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

  出示学习目标:

  理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。

  能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

  二、图柱转化,自主探究,验证猜想。

  (一)猜想。

  1、下面长方体、正方体和圆柱的底面积都相等,高也相等

  (1).长方体和正方体的体积相等吗?为什么?

  (2).猜一猜,圆柱的体积与长方体、正方体的体积相等吗?用什么办法验证呢?

  2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

  [数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

  3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

  (二)操作验证。

  1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

  在操作时,学生分组边操作边讨论以下问题:

  ①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

  ②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

  ?.拼成的近似长方体的高与原来的圆柱的高有什么关系?

  2、小组代表汇报

  (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

  3、电脑演示操作

  (1)电脑演示圆柱体转化成长方体的过程:

  仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

  动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

  (分的分数越多,拼成的图形就越接近长方体)

  (2)根据学生的观察、分析、推想,老师完成板书:

  长方体的体积=底面积×高

  圆柱的.体积=底面积×高

  V=Sh

  (3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

  三、练习巩固,灵活应用

  闯关1.

  1、填表。(课件)

  2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?

  让学生试做,集体反馈。

  闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?

  学生讨论、交流、汇报。

  小结:解决以上问题的关键是先求出什么?(生:底面积)

  闯关3.

  1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的(),它的底面积等于圆柱的(),高就是()的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于()乘(),用字母表示是()。

  2、圆柱底面半径为r厘米,高为h厘米,体积v=()立方厘米

  学生在练习本上独立完成,集体反馈。

  3、我是小法官

  1.正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。()

  2.长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。()

  3.圆柱体的底面积越大,它的体积越大。()

  4.圆柱体的高越长,它的体积越大。()

  5.如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍.()

  4、填空

  1.一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积()。

  2.一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是()立方厘米。

  拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?

  四、课堂小结

  学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

  五、布置作业

  教科书第21页练习三第1-4题。

  六年级下册数学教案 篇6

  教学过程

  1、出示主题图。教材第2页主题图。

  2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃和2℃各代表什么意思?)

  引出课题并板书:负数的初步认识

  1、教学例1。

  (1)教师板书关键数据:0℃。

  (2)教师讲解0℃的意思:0℃表示淡水开始结冰的温度。

  比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。

  比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。

  (2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

  (4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

  2、学生讨论合作,交流反馈。

  (1)请同学们把图上其它各地的温度都写出来,并读一读。

  (2)教师展示学生不同的表示方法。

  (2)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

  2、教学例2。

  (1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

  (2)引导学生归纳总结:

  像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-122这样的数表示的`是支出的钱数。

  (2)教师:上述数据中500和-500意义相同吗?

  (500和-500意义相反,一个是存入,一个是支出)。

  你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?

  师把学生的表示结果一一板书在黑板上。

  4、归纳正数和负数。

  (1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。

  (2)教师展示分类的结果,适时讲解。

  像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。

  像-8,-4,-500,-20这样的数,我们把它叫做负数。

  (2)那么0应该归为哪一类呢?

  组织学生讨论,相互发表意见。

  (4)归纳:0既不是正数也不是负数,它是正数和负数的分界点。

  (5)你在什么地方见过负数?

  鼓励学生注意联系实际举出更多的例子。

  六年级下册数学教案 篇7

  教学目标:

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。

  3、体验数学与日常生活密切相关,激发学生对数学的兴趣。

  教学重点:

  在现实情境中理解正负数及零的意义。

  教学难点:

  用正负数描述生活中的现象。

  教学准备:

  温度计挂图等

  教学过程:

  一、谈话导入:

  通过复习,你知道这节课要学什么么?(板书:负数)

  说我们以前认识过哪些数?(自然数、小数、分数)

  分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)

  二、学习例1:

  1、你知道今天的最高温度么?你能在温度计上找到这个温度么?

  介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。

  (2)以0为界,0上面的温度表示零上,0下面的温度表示零下。

  (3)刻度。要注意一大格、一小格分别表示多少度?

  在温度计上找到表示35℃的刻度。

  你知道什么时候是0℃吗?(水和冰的混合物)

  你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?

  分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。

  读一读:正35,负5

  分别说说在这3个不同的`温度你的感受。

  2、完成试一试:

  写出下面温度计上显示的气温各是多少摄氏度,并读一读。

  对零下几度,可能学生会不能正确地看,注意指导。

  3、完成第3页第2题的看图写一写,再读一读。

  简单介绍有关赤道、北极、南极的知识。

  4、完成第6页第4题:

  先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。

  5、读第7页第5题。,让学生说说体会。

  6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。

  三、学习例2:

  1、出示例2图片,介绍“海平面”“海拔”的基本知识。

  让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。

  再指一指吐鲁番盆地的海拔。

  指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。

  用你自己的理解来说说这样记录有什么好处?

  2、完成第6页第1题:用正数或负数表示下面的海拔高度。

  读一读第2题的海拔高度,它们是高于海平面还是低于海平面。

  三、认识正负数的意义:

  1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。黑板上这些数,哪些是正数?哪些是负数?

  你能用自己的话来说说怎样的数是正数?怎样的数是负数?0呢?为什么?

  2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。

  3、完成第6页第3题:分别写出5个正数和5个负数。

  四、全课小结:(略)

  六年级下册数学教案 篇8

  教学目标

  1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

  2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

  3、培养学生分析和解决实际问题的能力,发展学生的思维;

  4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

  教学关键

  培养学生分析和解决实际问题的能力

  教学重点

  复习分数乘除法应用题,掌握解题方法。

  教学难点

  找准单位“1”

  教学步骤

  一、基础训练导入。

  师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

  专项训练:

  课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

  在每道题后追问:从信息中你还知道了什么?指名回答,并作评价:说一说你们找单位1有什么好的`方法吗?

  我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

  常规性基本训练,复习找单位“1”训练:为新知识做铺垫。

  二、根据看线段图列式

  师:谁来说说,根据线段图应该这么列式呢?出示线段图【教学课件演示】

  注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

  三、基础练习

  基础练习只列式不计算

  师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

  归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

  尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

  【教学课件演示】

  培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

  四、对比练习

  1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?

  2)根据题意分析数量关系,然后列式计算,全班讲评。

  通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

  六年级下册数学教案 篇9

  教学内容:

  比例的意义:

  使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

  教学重点:

  比例的意义。

  教学难点:

  找出相等的比组成比例。

  教学过程:

  一、旧知铺垫

  什么是比?什么叫比值?怎样求比值?

  2.求下面各比的比值。

  12:16

  3/4:1/8

  4.5:2.7

  二、探索新知

  1.教学例1。

  (1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

  ①说一说各幅图的情景。

  ②图中有什么相同之处?

  (2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?

  (3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

  学生回答教师板书:

  60:40=3/2

  操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

  学生回答长、宽比值。

  2.4:1.6=3/2

  两面国旗的长和宽的比值相等。

  板书:2.4:1.6=60:40

  也可以写成:2.4/1.6.=60/40

  (4)找比例。

  师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?

  如:5:10/3=15:10

  5:10/3=2.4:1.6

  15?10=2.4/1.6

  15/10=60/40

  (5)什么是比例?

  表示两个比相等的式子叫做比例。

  (6)1:2是是比例吗?你能把它组成一个比例吗?

  (7)完成教材“做一做”。

  第1题。

  什么样的比可以组成比例?

  把组成的比例写出来。

  说一说你是怎么找的。

  同学之间互相交流,检验各自所写的比例。

  第2题。

  学生独立写比例,看谁写得多。

  同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

  3.课堂小结。

  (1)什么叫做比例?

  (2)一个比例式可以改写成几个不同的比例式?

  三、巩固练习

  完成课文练习六第1~3题。

  教学反思

  复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。

  在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完2.4:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式.在此基础上再提问“怎样的`式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)

  做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4=1.5∶3、4∶2=3∶1.5、2∶1.5=4∶3、1.5∶2=3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例1.5:3=2:4、3:1.5=4:2、4:3=2:1.5、3:4=1.5:2。为什么仅仅相换了等号两边的比,就应该算作不同的比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。

  练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。

  练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。

  六年级下册数学教案 篇10

  教学目标:

  通过例1的复习使学生进一步加深对求平均数问题中数量关系的理解及怎样求出总数等内容和理解。

  通过例2的复习进一步掌握求稍复杂的平均数问题的方法。

  通过复习使学生进一步学会整理数据、编制统计表,并能应用原始数据和表格计算有关的问题。

  教学过程:

  复均数。

  出示例1

  问:要求七个班的平均人数,该怎样算?让学生自己算出结果。

  想一想:如果已知七个班的平均人数,求这七个班的总人数,该怎样算?让学生自己解答。

  通过计算让学生总结出求平均数问题的计算方法。

  出示例2

  学生想:要求五年级平均每人做多少个,必须先求出( )和( )

  让学生自己列式解答。

  让学生总结求较复杂平均数问题的计算方法。

  完成137页的'“做一做”

  复习统计表

  出示137页的例题。

  让学生把计算结果填入表中的空格,再验算合计数和总计数,看看计算的结果对不对。

  完成138页的“做一做”

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!