3年级数学知识点总结150字 3年级数学知识点总结
大家好,我是东南,我来为大家解答以上问题3年级数学知识点总结150字,3年级数学知识点总结很多人还不知道,现在让我们一起来看看吧!
在平日的学习中,大家对知识点应该都不陌生吧?知识点就是一些常考的内容,或者考试经常出题的地方。掌握知识点有助于大家更好的学习。以下是小编收集整理的3年级数学知识点总结,欢迎阅读与收藏。
3年级数学知识点总结 1
第一单元 《位置与方向》
1.相对的方向:南←→北,西←→东;西北←→东南,东北←→西南
2.地图上的方向:上北下南,左西右东。实际方向:面北背南,左西右东。
3.指南针可以帮助我们辨别方向。
4.看简单路线图的方法:先要确定好自己所处的位置,以自己所处的位置为中心,再根据上北下南,左西右东的规律来确定目的地和周围事物所处的方向,最后根据目的地的方向和路程确定所要行走的路线。
5.描述行走路线的方法:以出发点为基准,再看哪一条路通向目的地,最后把行走路线描述出来(先向哪走,再向哪走),有时还要说明路程有多远。
6.绘制简单示意图:先确定好观察点,把选好的观察点画在平面图中心位置,再确定好各物体相对于观察点的方向。在纸上按“上北下南、左西右东”绘制,用箭头“↑”标出北方。
(描述是要注意是选取哪个物体作参照物的,选取的参照物不同,描述的结果也不一样。)
第二单元《除数是一位数的除法》
(一) 口算除法
1. 整千、整百、整十数除以一位数的口算方法。
(1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。
2. 三位数除以一位数的估算方法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。
(二) 笔算除法
1. 牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用“0”占位。每一次除得的余数必须比除数小。)
2. 会判断商是几位数。
比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。
3.除法的验算方法:
(1) 没有余数的除法:商×除数=被除数;
(2) 有余数的除法:商×除数+余数=被除数;
4.关于0的一些规定:
(1) 0不能作除数。
(2) 相同的两个数相除商是1(既然能相除这个数就不是0)
(3) 0除以任何不是0的数都得0;0乘任何数都得0
5.乘除法的估算:4舍5入法。
如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600
除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),然后再口算480÷8得60
第三单元《统计》
1.会看横向条形统计图及起始格与其他格代表的单位量不一致的条形统计图。能根据统计表中的数据完成统计图,完成的统计图上一定要标数据。
2.能根据统计图表进行分析,解决简单的实际问题(应用题)。能根据统计图、表提出简单的问题,并进行解答。
3.能根据统计图、表中的内容进行简单的数据分析提出合理化的建议。
4.理解平均数的含义,给出一组数据会求它们的平均数。(若干数相加的和,除以这些数的个数,所得的结果叫算术平均数,简称平均数。求平均数分为两步,首先求出若干数的和,再用所求的和除以这些数的个数。)如:3个女生身高:135厘米、140厘米、132厘米,求平均身高。熟记平均数的格式,总数量除以总份数:( + + …… + )÷ 并脱式计算p42。会检查平均数的对错,平均数一定介于最大数与最小数之间。
5.会用平均数来比较两组数据的总体情况。
6.给出平均数和几个数据,求另一个数据。如:小明三科成绩的平均分是85分,其中外语83分,数学80分,求语文多少分。
第四单元《年月 日》
(一) 年、月、日部分
1.一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。
2.记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二八九。7个大月,4个小月,二月平年28天,闰年29天。
3.平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。
4.闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。
5.公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、2000、2400等是闰年。
6.连续两个月共62天的是:7月和8月,12月和第二年的1月;
一年中连续两个月共62天的是:7月和8月。
7.一个人今年20岁,但只过了5个生日,他是2月29日出生的。
8.计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到2008年10月1日,是中国成立(59 )周年。用2008-1949=59周年
(二) 24时计时法部分
1.年月日、时分秒都是时间单位。
2.在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法, 通常叫做24时计时法。
3.1日(天)=24小时 ;1小时=60分 ;1分=60秒
4.求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。
5.认识时间与时刻的区别。
如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30,正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。
又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
6.经过的天数的计算:
公式:结束时间—开始时间+1=经过的天数
例如:6月12到6月30日是多少天?(30-12+1=19天)
第五单元《两位数乘两位数》
(一)口算乘法:
1.整十、整百、整千相乘的方法:先用0前边的数相乘,得到一个结果,然后再数一数被乘数和乘数中一共有多少个0,再在结果的后边添上多少0。
2.估算:想被乘数和乘数最接近或等于哪个整十的两位数,那么所要估算的结果就是这两个整十数的乘积。
(二)笔算乘法:注意竖式的格式。
两位数乘两位数在笔算时,首先要相同数位对齐,用下面因数的个位数和十位数依次去乘上面因数的个位数和十位数,将所得的积相加。(遇到进位乘法时,那一位上的乘积满几十就向前一位进几)
1、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。
2、验算:交换两个因数的位置。
第六单元《面积》
1.物体的表面或封闭图形的大小,就是他们的面积。
2.比较两个图形面积的大小,要用统一的面积单位来测量。
3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。
4.边长1厘米的正方形面积是1平方厘米。
5.边长1分米的正方形面积是1平方分米。
6.边长1米的正方形面积是1平方米。
7.边长100米的正方形面积是1公顷(10000平方米)。
8.边长1千米(1000米)的正方形面积是1平方千米。
9.测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。
平方千米 公顷 平方米 平方分米 平方厘米
10.长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长
11.正方形的面积=边长×边长
12.长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽
13.正方形的周长=边长×4
14.正方形的边长=周长÷4
15.相邻的两个常用的长度单位间的进率是10
16.相邻的两个常用的面积单位间的进率是100
17.1平方米=100平方分米 ;1平方分米=100平方厘米 ;
1公顷=10000平方米 ;1平方千米=100公顷(公顷、平方千米这两个土地面积单位间的进率是100)
注:面积和周长是不能相比较的;分清楚什么时候填长度单位,什么时候填面积单位,填土地面积单位时,比较小的土地面积(如:公园、体育场馆、超市、果园、广场)等一般情况下填公顷;(城市的占地、国家的面积、江河湖海的面积)等一般情况下填平方千米。
面积相等的两个图形,周长不一定相等。
注 意:
周长相等的两个图形,面积不一定相等。
第七单元《小数的初步认识》
小数的意义
把1个整体平均分成10份、100份、1000份……这样一份或几份可以用分母是10、100、1000的份数来表示,也可以依照整数的写法写在整数个位右面,用圆点隔开来表示十分之几、百分之几、千分之几……的数,叫做小数。
小数的数位
小数点的左边是它的整数部分,小数点的右边是它的小数部分。小数的计数单位是十分之一、百分之一、千分之一……按照一定的顺序排列起来。
1.把1米平均分成10份,每份是1分米;用米作单位是1/10米,也是0.1米。3份就是3分米、3/10米、0.3米。
2.把1米平均分成100份,每份是1厘米;用米作单位是1/100米,也是0.01米。7份就是7厘米、7/100米、0.07米。
注:一位小数的形式实际上是分数十分之几的另外一种表示形式,4/10写成小数就是0.4。
3.小数的基本性质:在一个小数的末尾添上0,小数的大小不变。
如:10.05,在它的末尾添上0,就变成了10.050,10.05=10.050=10.0500=10.05000……大小没有发生变化。
4.比较小数的大小:先看最高位,再看次高位,以此类推。
比较两个小数的大小,先看它们的整数部分,整数部分大的那个小数就大;整数部分相同的,十分位上的数大的那个数就大;十分位相同就比较百分位……
5.小数的加减法:列竖式相加减的时候,要把小数点对齐,然后再进行加减。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后记住在得数中点上小数点。
6.小数不一定比整数小
八.解决问题
在解答应用题时,首先要读准题目,分析题意,找出题目中的数量关系,在选择合适的方法来进行解答。
九.数学广角
在进行等量交换时,首先要正确理解已知条件,掌握已知条件中的数量关系,在进行交换。
3年级数学知识点总结 2
第一单元混合运算
知识点一、
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二、
关于“0”的运算
1、“0”不能做除数;
字母表示:a÷0错误
2、一个数加上0还得原数;
字母表示:a+0=a
3、一个数减去0还得原数;
字母表示:a-0=a
4、被减数等于减数,差是0;
字母表示:a-a=0
5、一个数和0相乘,仍得0;
字母表示:a×0=0
6、0除以任何非0的数,还得0;
字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
第二单元观察物体
1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。
2、总结:同一立体图形从不同角度观察会有不同的形状。
第三单元加与减
第一节捐书活动
知识点:
1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。
2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
第二节运白菜
1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。
2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
第三节节余多少钱
三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。
第四节里程表(一)
1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。
2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。
第五节里程表(二)
1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数
2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。
第四单元乘与除
第一节小树有多少棵
知识点:
1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。
2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。
3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。
4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。
第二节需要多少钱
知识点:
1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。
2、计算混合运算时,要先明确运算顺序,再计算。
第三节丰收了
知识点:1、整十数除以一位数的口算方法:
(1)先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。
(2)按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。
2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。
第四节植树
知识点:1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。
2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。
第五单元周长
知识点1:什么是周长
1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。
2、不规则物体或图形的测量方法:绳子测量法。
3、规则物体或图形的测量方法:(1)绳测法,(2)直尺测量法。
知识点二:长方形的周长
1、求长方形的周长必须满足两个条件:已知长和宽的长度。
2、长方形周长的计算方法:
(1)长方形的周长=长+宽+长+宽
(2)长方形的周长=长×2+宽×2
(3)长方形的周长=(长+宽)×2
(4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”
(5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”
3、正方形周长的计算方法:
(1)可以把4条边长加起来;
(2)用一条边长乘以4,即正方形的周长=边长×4
4、靠墙围成的长方形有两种情况:
(1)长边靠墙,
(2)宽边靠墙。
5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。
第六单元乘法
第一节蚂蚁做操
知识点:
1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。
2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。
第二节去游乐园
知识点:
1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。
2、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。
第三节乘火车
知识点:
1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。
2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。
第四节去奶奶家
知识点:
借助里程图解决问题时,一定要明确里程图中的数学信息,理解题意后再进行计算。
第五节:0×5=?
知识点:
1、0和任何数相乘都等于0。
2、一个乘数末尾有0的乘法的计算方法:
(1)先用这个乘数0前面的数乘另一个乘数;
(2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.
3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。
4、结论:
(1)因数的末尾有0,乘积中一定有0。
(2)因数的中间有0,乘积中不一定有0。
第六节买矿泉水
知识点:
1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。
2、连乘的运算顺序:按从左到右的顺序依次计算。
3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。
第七单元年月日
第一节看日历(一)
知识点:
1、一年有12个月。
2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。
3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个
第二节看日历(二)
知识点:
1、2月29日是个特殊的日子,只有4年才出现。
2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。
3、认识平年和闰年:
(1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。
(2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.
(3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。
(4)平年一年有52个星期零1天,闰年一年有52个星期零2天。
365÷7=52(个)......1(天)
366÷7=52(个)......2(天)
4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。
第三节一天的时间
知识点:
1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。
2、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,
3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。
4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。
5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。
第四节:时间表
知识点:
1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的进程活动。
2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。
3、判断谁跑得快,只要看谁用的时间短就可以了。
第五节数学好玩
知识点:
1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。
2、地面上一定范围内的直线距离可以直接用直尺来测量。
3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。
4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。
5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。
第八单元认识小数
第一节文具店
知识点:1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。
2、小数由整数部分、小数点、和小数部分组成。
3、一个小数的小数部分有几位数,它就是几位小数。
4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。
5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。
6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。
7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。
第二节货比三家
知识点
1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。
2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。
第三节存零用钱
知识点1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
第四节寄书
1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。
第五节能通过吗
1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。
2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。
3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。
3年级数学知识点总结 3
位置:所在或所占的地方。
方向:指东,西,南,北等方位。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。
其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。
余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。
被除数、除数、商的关系:被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍;除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
第一级运算:加法和减法叫做第一级运算。
第二级运算:乘法和除法叫做第二级运算。
数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
数据分析的步骤和应用:数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
(1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
(2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
(3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
平均数:指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
二十四时计时法
(1)分段计时法(十二时计时法):深夜12时是一日的开始,1天的24小时又分为两段,每段12小时。从深夜12时起到中午12时叫做上午,再从中午12时起到深夜12时叫做下午。生活中通常采用这种计时法。
(2)二十四时计时法:这是是广播电台、车站、邮电局等部门采用的0到24时计时法,按照这种计时法,下午1时就是13:00,下午2时就是14:00……夜里12时就是24:00,又是第二天的0:
乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20XX(积)
乘法的运算定律:
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
群中的乘法运算不再要求交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。
(1)乘法交换律:a×b=b×a
(2)乘法结合律:(a×b)×c=a×(b×c)
(3)乘法分配律:(a+b)×c=a×c+b×c
面积:物体的表面—平面图形的大小,叫做它们的面积。
常用的面积单位有平方厘米、平方分米和平方米。
(1)边长是1厘米的正方形,面积是1平方厘米。
(2)边长是1分米的正方形,面积是1平方分米。
(3)边长是1米的正方形,面积是1平方米。
一般测量较大的面积用到公顷和平方千米。
(1)边长是100米的正方形,面积是1公顷。
(2)边长是1千米的正方形,面积是1平方千米。
面积计算方法:
长方形:S=ab{长方形面积=长×宽}
正方形:S=a2{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=πr2{圆形(正圆)面积=圆周率×半径×半径}
面积计量单位及进率:
1平方千米(k㎡)=100公顷(ha)1平方千米=1000000平方米(㎡)
1公顷=10000平方米1平方米=100平方分米(d㎡)
1平方分米=100平方厘米(c㎡)。
公顷:公顷的单位符号用“h㎡”表示,其中h表示百米,h㎡的含义就是百米的平方,也就是10000平方米,即1公顷。
小数:小数由整数部分、小数部分和小数点组成。
当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。
分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。
小数的基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。
而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
小数写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
小数的读法:
(1)按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读。
例:读作百分之三十八,读作十四又百分之五十六。
(2)整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个
例:读作零点四五;读作五十六点零三二;读作一点零零零五。
本文到此讲解完毕了,希望对大家有帮助。